39 research outputs found

    Identifying Nutrient Export Hotspots Using a Spatially Distributed Model in Boreal-Forested Catchments

    Get PDF
    The implementation of the Water Framework Directive (WFD) aimed to reduce nutrient export from catchments to water courses. Forest operations cause diffuse loading, which challenges the efficient targeting of water protection measures. We formed 100 equally probable clear-cut scenarios, to investigate how the location of the clear-cuts influenced the total nitrogen (TN) and phosphorous (TP) export on different scales. The nutrient export was calculated by using a distributed nutrient export model (NutSpaFHy). The clear-cut-induced excess TN and TP exports varied by 4.2%–5.5% and 5.0%–6.5%, respectively, between the clear-cut scenarios. We analyzed how the sub-catchment characteristics regulated the background export. The results also suggested that there was no single sub-catchment feature, which explained the variation in the TN and TP exports. There were clear differences in the background export and in the clear-cut-induced export between the sub-catchments. We also found that only 5% of the forest area could contribute up to half of the total nutrient export. Based on our results, we presented a conceptual planning framework, which applied the model results to finding areas where the nutrient export was high. Application of this information could improve the overall effectiveness of the water protection measures used in forestry

    NutSpaFHy : A Distributed Nutrient Balance Model to Predict Nutrient Export from Managed Boreal Headwater Catchments

    Get PDF
    Responsible forest management requires accounting for adverse environmental effects, such as increased nutrient export to water courses. We constructed a spatially-distributed nutrient balance model NutSpaFHy that extends the hydrological model SpaFHy by introducing a grid-based nutrient balance sub-model and a conceptual solute transport routine to approximate total nitrogen (N) and phosphorus (P) export to streams. NutSpaFHy uses openly-available Multi-Source National Forest Inventory data, soil maps, topographic databases, location of water bodies, and meteorological variables as input, and computes nutrient processes in monthly time-steps. NutSpaFHy contains two calibrated parameters both for N and P, which were optimized against measured N and P concentrations in runoff from twelve forested catchments distributed across Finland. NutSpaFHy was independently tested against six catchments. The model produced realistic nutrient exports. For one catchment, we simulated 25 scenarios, where clear-cuts were located differently with respect to distance to water body, location on mineral or peat soil, and on sites with different fertility. Results indicate that NutSpaFHy can be used to identify current and future nutrient export hot spots, allowing comparison of logging scenarios with variable harvesting area, location and harvest techniques, and to identify acceptable scenarios that preserve the wood supply whilst maintaining acceptable level of nutrient export

    Soil disturbance by cut-to-length machinery on midgrained soils

    Get PDF
    Article id 10134201

    Exploring the Role of Weather and Forest Management on Nutrient Export in Boreal Forested Catchments Using Spatially Distributed Model

    Get PDF
    Weather-driven hydrological variability and forest management influence the nutrient export from terrestrial to aquatic systems. We quantified the effect and range of variation in total nitrogen and phosphorus export in Vehka-Kuonanjärvi catchment located in southeastern Finland. A distributed model NutSpaFHy was used with varying weather scenarios (compiled from observed extreme years of dry, wet and wet & mild) and forest management scenarios (including no additional management and intensive clear-cutting of all mature stands in the existing forest structure). Nutrient exports by scenario combinations were compared to modeled baseline export in observed weather. The results showed that the increase in nutrient export by wet & mild weather (over 55%) exceeded the increase caused by the clear-cutting scenario (23 %). Dry weather decreased the exports to tenth of the baseline, which was per hectare 2.22 kg for N, 0.08 kg for P). The results suggest that in future maintaining a good ecological status in aquatic systems can be challenging if extreme wet years with mild winters occur more frequently. Certain catchment characteristics, e.g., deciduous tree percentage, open area percentage and site fertility, influence the export increase induced by the extreme weather. Hotspot analysis enabled identifying areas with currently high nutrient export and areas with high increase induced by the extreme weather. This helps targeting water protection efficiently

    Exploring the Role of Weather and Forest Management on Nutrient Export in Boreal Forested Catchments Using Spatially Distributed Model

    Get PDF
    Weather-driven hydrological variability and forest management influence the nutrient export from terrestrial to aquatic systems. We quantified the effect and range of variation in total nitrogen and phosphorus export in Vehka-Kuonanjärvi catchment located in southeastern Finland. A distributed model NutSpaFHy was used with varying weather scenarios (compiled from observed extreme years of dry, wet and wet & mild) and forest management scenarios (including no additional management and intensive clear-cutting of all mature stands in the existing forest structure). Nutrient exports by scenario combinations were compared to modeled baseline export in observed weather. The results showed that the increase in nutrient export by wet & mild weather (over 55%) exceeded the increase caused by the clear-cutting scenario (23 %). Dry weather decreased the exports to tenth of the baseline, which was per hectare 2.22 kg for N, 0.08 kg for P). The results suggest that in future maintaining a good ecological status in aquatic systems can be challenging if extreme wet years with mild winters occur more frequently. Certain catchment characteristics, e.g., deciduous tree percentage, open area percentage and site fertility, influence the export increase induced by the extreme weather. Hotspot analysis enabled identifying areas with currently high nutrient export and areas with high increase induced by the extreme weather. This helps targeting water protection efficiently

    Ohjeita kosteusindeksikarttojen käyttöön metsätaloudessa

    Get PDF
    Kosteusindeksikartat osoittavat kosteiden alueiden sijainnin purojen, norojen, lampien ja järvien läheisyydessä. Maaperän kosteus mallinnetaan pääosin laskemalla maaperän topografian perusteella kosteusindeksejä. Eri kosteusindeksit tuottavat tarkkuudeltaan erilaisia karttoja, mutta niiden kaikkien avulla on tunnistettavissa huomattavasti enemmän noroja kuin perinteisiltä kartoilta. Nämä ohjeet havainnollistavat, kuinka ympäristötekijöitä voidaan ottaa paremmin huomioon metsätaloudessa kosteusindeksikarttojen avulla. Ohjeet on tuotettu metsäsuunnittelijoiden, koneenkuljettajien, metsänomistajien sekä metsä- ja ympäristöviranomaisten käyttöön.202

    Assessing extraction trail trafficability using harvester CAN-bus data

    Get PDF
    Modern forest machines with a Controlled Area Network (CAN)-bus managed diesel engine and hydrostatic transmission can continuously measure power expended in traveling. At a constant speed on level ground, the power is expended in overcoming motion resistance, which is directly related to wheel sinkage and hence to site trafficability. In cut-to-length timber harvesting, the harvester precedes the forwarder on the site, making it feasible to utilize the harvester to collect data on site trafficability to produce a trafficability map for the forwarder. CAN-bus trafficability mapping was tested with an 8-wheeled Ponsse Scorpion King harvester and an 8-wheeled Ponsse Elk forwarder instrumented for collecting transmission power expenditure, in addition to appropriate available CAN-bus information. Trafficability was also mapped based solely on momentary engine power in order to eliminate the need for additional pressure transducers. The CAN-bus data showed good results for mapping site trafficability when compared to soil penetration resistance and harvesting machinery wheel rut depth measurements. Assessing harvester rolling resistance using CAN-bus data offers an interesting possibility to map harvesting site trafficability also in Big Data scale. Since modern harvesters are practically ready for indirect power recording, the additional cost of fully automated and comprehensive trafficability mapping as part of operative forestry is negligible.202

    Wheel rut measurements by forest machine-mounted LiDAR sensors - accuracy and potential for operational applications?

    Get PDF
    Soil rutting caused by forest operations has negative economic and ecological effects and thus limits for rutting are set by forest laws and sustainability criteria. Extensive data on rut depths are necessary for post-harvest quality control and development of models that link environmental conditions to rut formation. This study explored the use of a Light Detection and Ranging (LiDAR) sensor mounted on a forest harvester and forwarder to measure rut depths in real harvesting conditions in Southern Finland. LiDAR-derived rut depths were compared to manually measured rut depths. The results showed that at 10-20 m spatial resolution, the LiDAR method can provide unbiased estimates of rut depth with root mean square error (RMSE) < 3.5 cm compared to the manual rut depth measurements. The results suggest that a LiDAR sensor mounted on a forest vehicle can in future provide a viable method for the large-scale collection of rut depth data as part of normal forestry operations
    corecore